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Fig. 1.  Results on an artificial probability map. Inner and outer 
surfaces of a paraboloid-shaped layer of GM are depicted. Line 
segments are chosen by the algorithm such that they give the 
smallest integrals (of the probability map) among all line segments 
passing through every selected test point, shown as small circles. 

ABSTRACT 

Estimating the thickness of cerebral cortex is a key step in many 
MR brain imaging studies, revealing valuable information on 
development or disease progression. In this work we present a new 
approach to measure the cortical thickness, based on minimizing 
line integrals over the probability map of the gray matter in the 
MRI volume. Previous methods often perform a binary-valued 
segmentation of the gray matter before measuring the thickness. 
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We describe our proposed method and demonstrate its 
performance on both artificial volumes and real 3D brain MRI data 
from subjects with Alzheimer’s disease and healthy individuals.  
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1. INTRODUCTION 

Measuring the cortical thickness has long been a topic of interest 
for neuroscientists. Cortical thickness changes in a characteristic 
pattern during childhood development and with the progression of 
neurodegenerative diseases such as Alzheimer’s, HIV/AIDS, and  
epilepsy [1]–[2]. Recent studies examining changes in cortical 
th
living brain, and have been used to quantify treatment effects, 
identifying regions where cortical thickness correlates 
c

es have recently been p
th
Imaging (MRI) data, e.g., [3]–[10]. The limited spatial resolution 
of most MRI volumes (typically 1-2 mm) makes it difficult to 
measure cortical thickness accurately, which varies from 2 to 5 mm 
in different brain regions and is only a few voxels thick in the 
images. The neuroscience community has not yet agreed on a 
unique definition of cortical thickness and so far various proposed 
methods measure slightly different quantities. What is common 
among them is that they virtually all perform a pre-segmentation of 
the white matter (WM), gray matter (GM), and cer
(CSF), and most extract explicit models of the surfaces between 
them (i.e., the inner surface between WM and GM and outer 
surface between GM and CSF). They then use this hard 
segmentation as the input data for different tissue thickness 
measurement algorithms (Sec. 2 briefly reviews previous work). 
The disadvantage of this approach is that in the hard segmentation 
process, a considerable amount of information is discarded and 

never used in measurement, not to mention the significant error in 
measured thickness that could be introduced by a few misclassified 
voxels (see Sec. 4.1 for an example). 

The approach we adopt here uses a soft pre-labeled volume as 
the input data. Due to the limited resolution of an MRI volume, 
many voxels contain partial amounts of two or more tissue types 
(see [11] and the references therein). Their intensity values give us 
information about the probability/proportion of those voxels 
belonging to any of the categories of WM, GM, or CSF. Rather 
than a pre-classified volume, we use one containing the probability 
that each voxel belongs to the GM.1 These probability values have 
the same precision as the values in the original MRI volume, and 
therefore we do not discard any useful information.  We compute 
line integrals of the soft classified data, centered at each voxel and 
in all possible spatial directions, and then consider their minimum 
as the local cortical thickness at that voxel (Fig.1).

In Sec. 2 we review previous work on cortical thickness 
measurement. Sec. 3 describes our proposed framework, and 
experimental results are presented in Sec. 4. Sec. 5 concludes with 
a review of the contributions. 

2. PREVIOUS WORK 

We now discuss some of the previously reported work for 
measuring the cortical thickness. Most methods require a pre-
segmentation of the inner and outer surface, which results in a loss 
of available information and often inaccuracy of t

in measuring algorithm. 

1 When considering partial volume effects, these “probabilities” 
represent the proportion of GM in the voxel. 
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Fig. 2. Common ways of measuring cortical thickness.  (a) 
Coupled surface methods.  (b) Closest point methods.  (c) Laplace 
(‘heat-flow’) methods.  (d) Largest enclosed sphere methods. 

(a)             (b) 

Fig. 3. Computing line integrals passing through a point, and 
choosing the minimum integral value.  (a) Binary probability map.  
(b) Continuous probability map. 
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Coupled surface methods [3], [12], define the cortical thickness 
as the Euclidean distance betw
in

y result in an overestimat
(s
each point on one of the two surfaces the closest point on the other 
surface and define the thickness as the distance between them. The 
main drawback to these methods is the absence of symmetry, as 
seen in Fig. 2(b). In another method introduced in [14], the 
regional histogram of thic  is estimated by measuring the 

gth of the line segments connecting the inner and outer surfaces 
of the GM layer, normal to one of the surfaces. The median of the 
histogram is then chosen as the local cortical thickness. A detection 
of the WM-GM and GM-CSF boundaries is however necessary. 

Laplace Methods [4], [7], [15] solve Laplace’s equation in the 
GM region with the boundary condition of constant (but different) 
potentials on each of the two surfaces. The cortical thickness is 
then defined on each point as the length of the integral curve of the 
gradient field passing through that point, as illustrated in Fig. 2(c).  
With this approach, the thickness is uniquely defined at every 
point. Nevertheless, a pre-segmentation of the two surfaces is 
required, reducing the accuracy of this technique. 

Another category of methods defines thickness by making use 
of a central axis or skeleton [9], [16]. Thickness is typically 
estimated as the diameter of the largest enclosed sphere in the GM 
layer, which is (in some cases only initially) centered on a point on 
the central axis. As Fig. 2(d) demonstrates, a relatively sharp 
change in the thickness may result in a new branch and affect the 
topology of the skeleton. 

The vast majority of the methods reported in the literature 
propagate segmentation errors to later steps, and

ll in itself a challenging problem in brain imaging. Considering 
that the GM layer spans only a few voxels at the commonly used 1-
2 mm resolutions, these errors can be significant, and measuring 
tissue thickness avoiding this hard segmentation step may be very 
beneficial. This is the approach introduced here and described next. 

3. METHODS 

3.1. Definition 

In its simplest form, we define the thickness of the GM at a given 
voxel as the minimum line integral of the probability map of the 
GM over all lines passing through that voxel. Formally: 
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nts do lues since 
ses sig e g. 3(a) shows a

example of this construction for a 2D binary probability map, 
where the probability of belonging to the GM is 1 inside the shape 
and 0 outside. When computing thickness at the specified point, 
the line segment marked with oval arrows is selected as the one 
giving the smallest line integral. The corresponding integral value, 
which in this case is the length of its overlap with the GM (in 
bold), is the thickness of the GM at that point. A more realistic 
situation is shown in Fig. 3(b), where the probability map varies 
between zero and one. A blurred border, which results from the 
limited resolution of the MRI, includes voxels that partially contain 
GM. Due to the pre-segmentation, this type of partial volume 
information is not considered in most prior work in this area. 

Our method is based on an intuitive way of measuring the 
thickness of an object. A simple way to measure the local thickness 
of an object would be to put two fingers on both edges of the 
object, and move the finger tips locally (equivalent to varying the 
angle of the segment connecting them to each other), until the 
distance between them is minimized. This distance could then be 
considered as the local thickness of the object. Thus, we are 
dealing with a constrained optimization problem: minimizing a 
distance in a specific region. In our approach, however, this region 
is identified precisely by a point where we want to define the 
thickness. Therefore the constraint is that the point must be on the 
line segment connecting the two finger tips, in other words we 
consider only the line segments passing through the point where 
we intend to find the thickness. The minimized distance – or the 
length of the line segment – is in this case the integral of the 
probability map on the line containing the segment. 
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   (a)                                (b)                                (c) 

Fig. 5.  (a) A 2D slice of the volume presented in Fig. 1.  (b) The 
same slice in a five-times-lower-resolution volume with additive 
Gaussian noise.  (c) Binary classification of the low-resolution 
volume. 

3.2. Algorithm 

The algorithm basically computes every line integral centered at 
each point of the volume starting from that point and proceeding in 
each of the two opposite directions separately. Once all the line 
integrals at a point are calculated (meaning in all possible 
directions), the minimum of them is considered to be the thickness 

n that point. However, to reduce the effect of noise, an alternative 
ould be for instance to consider the average of some of the 
allest integrals. 
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In practice, a 
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4(a)). While computing the thickness on one part of the layer, the 
GM of the other part may be partially included in some of the line 
integrals; this may lead to the thickness being overestimated (Fig. 
4(b)). To avoid this error, we include two stopping criteria which 
prevent a line integral from further advancing when it is believed 
that no more summation is necessary or that we are mistakenly 
considering a different region of the GM layer. The line integral 
stops proceeding if 

1. Has been below a specific threshold for a certain number of 
consecutive voxels, or 

2. Has been decreasing at least for a certain number of 
successive voxels and then increasing for an additional number of 
voxels.

We use the first criterion, since if the probability has been low 
for a while, we are most likely not in the GM region anymore, and 
by further summing we would just increase the error. An additional 

stopped quickly after starting to measure the thickness on voxels 
that are not in the GM region, as if the aCSF

ints and so it returns almost zero values as the GM thickness on 
them. 

The second condition happens when two parts of the GM layer 
are so close to each other that the probability on the gap between 
them is n

GM 

e, therefore the algorithm stops summing after identifying a 
valley on the probability map. The algorithm can be implemented 
such that gaps as narrow as one voxel are detected by the above 
stopping criteria. 

4. RESULTS AND DISCUSSION 

4.1. Ar

WM 

(a)             (b) 

Fig. 4. (a) A sulcus in which two sides of the gray matter layer are 
close to each other.  (b) How the algorithm might overestimate the 
thickness if no stopping criteria were used. 

To illustrate and validate our approach, we first show results using 
artificial input data. Fig. 1 shows the isosurfaces of an artificially 
created probability map of a paraboloid-shaped layer of GM with 
varying thickness in a volume of 50x50x50 voxels. The two 
isosurfaces represent the inner and outer surfaces. Depicted as 
small circles, a nu
th

ch line segment is the optimal direct
th
demonstrated on the f

when noise and partial volume effects are present, we reduced the 
resolution of the volume five times by taking the mean value of 
every 5x5x5 sub-volume; we also added zero-mean Gaussian noise 
with standard deviation of 0.2 (Fig. 5(b)), and ran the measurement 
algorithm on it. In addition, we performed hard segmentation on 
the low-resolution, noisy volume by substituting the probability 
values less than 0.5 with 0 and other values with 1 (Fig. 5(c)), and 
re-ran the measurement algorithm. Using the results of the high-
resolution case as ground truth, the experiments on the low 
resolution and noisy volumes showed an average error in

timated thickness of 1.9 voxels in the segmentation-free case and 
2.2 voxels when hard segmentation was performed for reporting 
this measurement. 

4.2. Real MRI Data 

We tested the proposed technique on 44 T1-weighted brain MRI 
scans, acquired using a standard sagittal 3D MP-RAGE sequence 
(TR: 2400 ms, minimum TE, inversion time (TI) 1000 ms, flip 
angle: 8°, 24 cm field of view) with a reconstructed voxel size of 
0.9375x0.9375x1.2 mm3. To adjust for scanner – and session – 
specific calibration errors, standard corrections were made for 
gradient nonlinearity, phantom-based scaling, and adjustment of 
intensity inhomogen

as a Gaussian distribu
M
manually-selected sample voxels in the GM, while the standard 
deviation is the difference between the manually estimated mean 
values of GM and WM. We could use more sophisticated soft 
classification algorithms, such as Partial-Volume Bayesian 
algorithm (PVB) [18], Probabilistic Partial Volume Classifier 
(PPVC) [19], and Mixel classifier [20], to further improve the 
results. 
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Our dataset includes pairs of scans over a one-year interval from 
22 subjects, of whom 9 had been diagnosed with Alzheimer’s 
disease at their first scan, and 13 were age-matched normal 
subjects. The mean thickness in the temporal lobe showed an 
average of 1% decline over a year in the AD patients (with the 
standard error of 1%), and virtually no decline in the normal 
brains.2 The temporal lobe, where greatest change is expected in 
AD, was defined by linearly aligning binary regions of interest 
from a standardized atlas onto the thickness map (while more 
sophistic

   (a)                                                 (b) 
Fig. 6.  Experimental results on MRI data. All computations have 
been done in 3D.  (a) A slice of the original volume.  (b) The 
thickness map of the same slice (blue thinner, red thicker). 

Fig. 7.  3D mapping of the cortical thickness (blue thinner, red 
thicker). 

ated registration is possible, the mean thickness is robust 
to

alg

e. Two 
opping criteria are taken into consideration to address issues 

created by narrow su  work, we take into 
count the probability of each voxel belonging to the gray matter 

the human 
cortex from magnetic resonance images,” Proc. Nat. Acad. Sci., vol. 97

 ma
the cortical thickness using Laplace's equation,” Hum. Brain Mapping,
pp. 12–32, 2000. 

[5] N. Kabani, G. Le Goual . C. Evans, “Measurement 

[9] N. Thorstensen, M. Hofer, G. Sapiro, H. Pottmann, “Measuring cortic
thickness from volumetric MRI data,” unpublished, 2006. 

 small errors in defining the limits of this relatively large region).  
A 2D slice from an MRI volume is shown in Fig. 6(a) along 

with its computed thickness map in Fig. 6(b). Since we do not 
extract the GM, the results also contain thickness values for other 
parts of the head such as the scalp, which may be ignored. Fig. 7 
illustrates a 3D surface-based mapping of the cortical thickness 
visualized by the mrGray software, using the steps in [21]. 

5. CONCLUSIONS 

We presented a new definition of cortical thickness along with an 
orithm for computing it. We were motivated by the importance 

of measuring the thickness of cerebral cortex for quantifying the 
progression of various neurodegenerative brain diseases. Our 
method calculates the thickness at each voxel, by computing all 
line integrals of the probability map of the gray matter passing 
through that voxel, and choosing the minimum integral valu
st

lci. Unlike most prior
ac
layer and do not carry out a hard segmentation prior to measuring 
the thickness.  We have validated the technique with artificial data 
and presented reasonable preliminary results for longitudinal MRI 
scans of Alzheimer’s disease and normal subjects. 
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